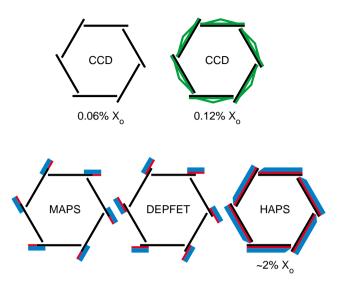

New CCDs

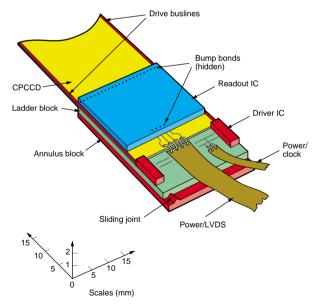
Brookhaven National Lab Chris Damerell November 2001

- Novel CCD developments for a host of application areas
 - reduced clock voltages for consumer market: video and still photography
 - LLLCCD for surveillance, star trackers etc
 - high throughput devices for future X-ray telescopes
- Ongoing cross-fertilization between such developments and CCDs for particle tracking
- Focus on the CCDs for a vertex detector at the future TeV-scale e⁺e⁻ linear collider

• Now almost unanimous agreement on optimal detector layout:

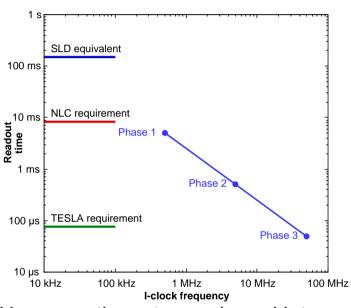


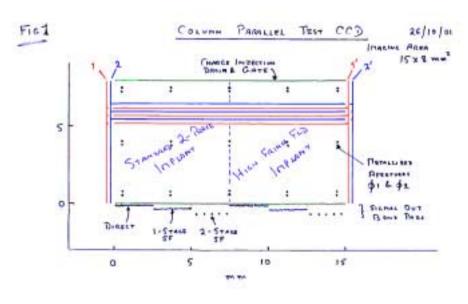
- Pixel-based (microstrips faded out in 1993)
- Concentric long barrels ('lampshade' variant still considered up to time of TESLA TDR.


 Would make sense in context of a thick-layer fallback option)
- Measure space points with precision $< 5 \mu m$ in each layer
- Layer thickness ≤ 0.1% X₀
- Layer 1 readout time \leq 50 μ s required for TESLA 8 ms OK for NLC/JLC (this became clear in November 1998)
- Modest radiation hardness
- While the goals are clear, the means to get there are not
- Very dynamic: 4 technologies being pursued (CCD, MAPS, DEPFET and HAPS)

- If more than one technology achieves the above goals, decision will probably become clear on basis of material budget
 - This matters all the way to $|\cos\theta| = 0.996$ (LAT outer edge at 83 mrad) [similar considerations relevant to TPC/silicon tracker comparison]
 - γ conversions and secondary interactions are dangerous for energy flow quality of forward jets
 - Mechanical supports need to provide \sim 1 μ m stability
 - Inner electronics material budget by no means quantified
 - Cables and optic fibres probably modest for all options
 - Cooling requirements could be decisive
- Need full sized, fully functional prototype ladder before taking any technology seriously [the devil is in the details]
- Meanwhile, important for all concerned to avoid overselling any option

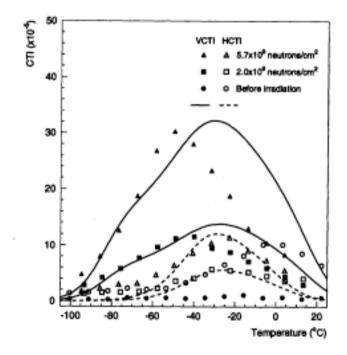
• $r - \phi$ views


Material requirements beyond active ladder ends are relatively unknown for all options



R&D for thin ladders (applicable to CCD, MAPS and DEPFET) currently only in LCFI collab

CCD R&D Status


Proposal to PPESP of March 2001 was cautiously staged

- Has recently metamorphosed into a multi-faceted set of test CCDs which will explore all three phases in parallel
- Experience at MTech with XMM and other recent CCD designs is proving invaluable
- 'Dream team' of David Burt et al, Marcus French, Steve Thomas, Konstantin Stefanov, Tony Gillman...

- Column parallel ideally suited to real-time pipelined data sparsification
- Reduced clock voltages the key to acceptable power dissipation. Hope to retain massless gas cooling
- Test devices should be available by Summer 2002
- Radiation hardness good news for CCDs

• Each technology has its list of possible show-stoppers. One for the CPCCD (recently solved) was the busline inductances. More dangerous are the ones we don't know about!